Evaluating Noise Infusion for Disclosure Protection for Two Time Periods

Jared Martin
U.S. Census Bureau

Note: Any views expressed are those of the author and not necessarily those of the U.S. Census Bureau.
The Economic Census of Island Areas (IA)

- Quinquennial census

- Provides comprehensive data on economic activity and structure for Island Areas of the U.S.

- Covers American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, Puerto Rico and the U.S. Virgin Islands
Noise Infusion for Disclosure Avoidance

• Perturbs each individual contributor to a tabulated result by a small amount

• For the Economic Census of Island Areas, noise infusion applied using multiplicative factor from split triangular distribution

• Guarantees minimal protection by choosing appropriate noise factor distribution
Noise Infusion as Applied to IA

- Noise factors are ‘balanced’ using reported sales data at the industry category level.

- If a company reports with more than one establishment, we assign each establishment’s noise factor in the same direction as the company’s noise factor.
Concerns About Noise In Consecutive Periods

• Tabulated results with few contributing companies or with a few large contributors have large variation due to noise.

• Large variation in a tabulated value due to noise may drive change in tabulated value from cycle to cycle and interfere with trend over time.
Example of Noise Effects on Totals

<table>
<thead>
<tr>
<th>Company</th>
<th>Actual Sales</th>
<th>Noise Factor</th>
<th>Noisy Sales</th>
<th>Actual Sales</th>
<th>Noise Factor</th>
<th>Noisy Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$ 10.0</td>
<td>1.14</td>
<td>$ 11.4</td>
<td>$ 10.0</td>
<td>0.85</td>
<td>$ 8.5</td>
</tr>
<tr>
<td>B</td>
<td>$ 0.5</td>
<td>0.9</td>
<td>$ 0.45</td>
<td>$ 0.5</td>
<td>1.10</td>
<td>$ 0.55</td>
</tr>
<tr>
<td>C</td>
<td>$ 0.5</td>
<td>0.9</td>
<td>$ 0.45</td>
<td>$ 0.5</td>
<td>1.10</td>
<td>$ 0.55</td>
</tr>
<tr>
<td>Total</td>
<td>$ 11.0</td>
<td></td>
<td>$ 12.3</td>
<td>$ 11.0</td>
<td></td>
<td>$ 9.6</td>
</tr>
</tbody>
</table>
New Method Suggestions

• Preserve noise factor direction for contributors appearing from cycle to cycle

• Some combination of preserving direction and magnitude of factor from cycle to cycle
Methods 1–4 (out of 10)

Methods Evaluated Using Simulations

• Method 1 – Current methodology with direction and magnitude of noise not fixed

• Method 2 – Fixing the direction and magnitude of noise factors for companies appearing from cycle to cycle

• Method 3 – Fixing only the direction of noise factors appearing from cycle to cycle

• Method 4 – Fixing direction and magnitude of noise factors for companies appearing from cycle to cycle and contributing more than 50% of an estimate or are in top two contributors that together contribute at least 75%
Simulation of Variation Due to Noise

Non-Noisy Tabulation Value
Results of Simulation

Distribution of Distortion as a Percent of Non-Noisy Total Sales for American Samoa

Method 1 – Reassigned noise direction and magnitude
Method 2 – Fixed noise direction and magnitude
Method 3 – Fixed noise direction
Method 4 – Fixed noise direction and magnitude for cases > 50% of an estimate or in the top two contributors that together are > 75% of an estimate
Results

• Tabulated values using Method 1 had the largest variation due to noise.

• In Method 3, fixing direction of noise factors reduced variation of tabulated values due to noise.

• In Method 2, fixing direction and magnitude of noise factors further reduced variation of tabulated values due to noise, but raises concerns of not enough variation to provide adequate disclosure avoidance.

• In Method 4, fixing direction and magnitude of noise factors for “large” companies provided some reduction in variation due to noise, but “large” is subjective.
Methods 5 and 6

• Method 5 – Fixing direction and randomly picking magnitude of noise factors from triangular density \((c = \text{old factor magnitude}, \ d = c + 0.0125)\) for companies appearing from cycle to cycle and contributing more than 50% of an estimate

• Method 6 – Same as Method 5, except \(d = c + 0.005\)
Methods 7 and 8

• Method 7 – Fixing direction of noise factors for companies appearing from cycle to cycle and contributing more than 50% of a tabulated result

• Method 8 – Fixing direction for establishments appearing from cycle to cycle and contributing more than 75% of a tabulated result
Methods 9 and 10

- Method 9 – Same as Method 5, except applied to establishments appearing from cycle to cycle and make up more than 50% of an estimate or are a company with more than one establishment

- Method 10 – Same as Method 4, except only direction fixed, allowing magnitude to vary
Methods Summary

<table>
<thead>
<tr>
<th>Methods</th>
<th>Fixed Direction</th>
<th>Fixed Magnitude</th>
<th>Small Magnitude Variation</th>
<th>> 75% of Value</th>
<th>> 50% of Value</th>
<th>Top 2 >75% of Value</th>
<th>Companies With Multiple Establishments</th>
<th>All Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Results

Distribution of Distortion as Percent of Non->Noisy Total Sales for American Samoa

Method 3 – Fixed noise direction
Method 5 – Fixed noise direction and magnitude varies by 0.0125 for cases > 50% of an estimate
Method 6 – Fixed noise direction and magnitude varies by 0.005 for cases >50% of an estimate
Method 7 – Fixed noise direction for companies > 50% of an estimate
Results

Distribution of Distortion as Percent of Non-Noisy Total Sales for American Samoa

Method 3 – Fixed noise direction > 50% of an estimate

Method 8 – Fixed noise direction for companies that are > 75% of an estimate

Method 9 – Fixed noise direction and magnitude varies by 0.0125 for cases > 50% of an estimate or are a company with multiple establishments.

Method 10 – Fixed noise direction for cases > 50% of an estimate or in top two contributors that together are > 75% of an estimate
Conclusion

- Rejected methods 5-7 because of exceptions where the distribution of overall distortion was biased or had too much variation.

- Rejected method 8 because too few establishments had fixed noise and the result nearly identical to current method.

- Methods 3, 9 and 10 produced similar results, but method 3 recommended because it most consistently reduced variance and bias in the distribution of overall percent noise of an estimate and it is the simplest of methods 3, 9 and 10.
Contact Information

Jared Martin
Mathematical Statistician
Company Statistics Division
U.S. Census Bureau
Office: 301-763-6974
Email: Jared.Martin@census.gov