Calibration and Nonresponse Adjustment for the Quarterly Summary of State and Local Tax Revenues F-73 Survey

Justin Nguyen
Bac Tran

Program Research Branch
Governments Division
U.S. Census Bureau
Disclaimer: This presentation is released to inform interested parties of ongoing research and to encourage discussion of work in progress. Any views expressed on statistical, methodological, technical, or operational issues are those of the authors and not necessarily those of the U.S. Census Bureau.
Outline

- Overview of the Quarterly Summary of State and Local Tax Revenues (QTax)
 - Purpose
 - Primary Components
 - Data Products
- Methodology
 - Sample design
 - Estimation
 - Variance Estimation
- Estimation for Local Non-property Taxes (F-73)
- Next Steps
Overview of QTax

Purpose: To provide quarterly estimates of state and local government tax revenue at the national level and detailed tax revenue estimates for each state
Overview of QTax (cont’d)

There are three survey components in QTax:

- Local government property tax (F-71)
- State government taxes (F-72)
- Local government non-property taxes (F-73)
Overview of QTax (cont’d)

Data Products

- Table 1: National totals of state & local taxes
 - Estimates
 - Coefficients of Variation
 - Margins of Error
 - Total Quantity Response Rates (TQRR)

- Table 2: National totals of state government taxes

- Table 3: State government taxes by state
Overview of QTax (cont’d)

- F-71: Local Government Tax
 - T01: Property tax

- F-73: Local Government Non-property Tax
 - T40: Individual income
 - T41: Corporation net income
 - T09: General gross and receipts sales
 - T13: Motor fuel sales
 - T16: Tobacco product sales
 - T10: Alcoholic beverage sales
 - T24: Motor vehicle and operator’s licenses
 - T15, T70, T71, T72: All other
Overview of QTax (cont’d)

- **F-72: State Government Tax**
 - T01: Property tax
 - T09: General Sales and Gross Receipts Taxes
 - T10: Alcoholic Beverages Sales Tax
 - T13: Motor Fuels Sales Tax
 - T16: Tobacco Products Sales Tax
 - T24: Motor Vehicles License
 - T25: Motor Vehicle Operators License
 - T40: Individual Income Taxes
 - T41: Corporation Net Income Taxes
 - T11: Amusements Sales Tax
 - T12: Insurance Premiums Sales Tax
 - T14: Pari-mutuels Sales Tax
 - T15: Public Utilities Sales Tax
 - T19: Other Selective Sales and Gross Receipts
 - T21: Amusements License
 - T22: Corporations in General License
 - T23: Hunting and Fishing License
 - T27: Public Utilities License
 - T28: Occupation and Businesses License, NEC
 - T29: Other License Taxes
 - T50: Death and Gift Taxes
 - T51: Documentary and Stock Transfer Taxes
 - T53: Severance Taxes
 - T99: Taxes, NEC
Methodology: Sample Design for Local Government Property Tax (F-71)

- Past sample selected in 1997 and based on 1992 Census of Governments

- Sample redesigned in 2008 and current sample based on 2002 Census of Governments stratified on population size and tax revenues
Methodology: State Government Taxes (F-72)

- Census of all state governments
- National aggregations of detailed state government taxes
Methodology: Sample Design for Local Government Non-property Taxes

Local government non-property taxes (F-73)

- Non-probability sample design before 2010 quarter 4

- Since then, stratified simple random sample of local tax imposers based on the 2007 Census of Governments
Estimation: Local Government Property Tax (F-71)

- High response rate with growth rate imputation

- Horvitz-Thompson estimator for estimates and variance
Under ideal settings, there would be a 100% response rate and the Horvitz-Thompson (HT) estimator would be unbiased.

\[\hat{y}^{HT} = \sum_{i \in S} d_i y_i \]

where \(S \) is the sample and \(d_i \) is the survey design weight of the \(i^{th} \) unit.
Estimation: Local Government Non-property Taxes (F-73)

Non-response follow-up (NRFU)

A subsample of 600 units in the NR population of all quarters was selected

- The response rate (RR) of the NRFU sample was lower than expected

- Could not determine the nature of missingness mechanism.
Estimation: Local Government Non-property Taxes (F-73) (cont’d)

Missingness Mechanism

- **Missing completely at random (MCAR)**
 - Missingness is not related to the variables under study.

- **Missing at random (MAR)**
 - Missingness is related to the observed data but not the missing data.

- **Missing not at random (MNAR)**
 - Missingness is related to the variables under study

Assumption: F-73 is at least MAR
Adjust the survey weights so that the weighted sum of benchmark variables equals to a pre-determined set of population values.

\[
\{d_i\}_{i \in S} \xrightarrow{NRA\text{djustment}} \{w_i^*\}_{i \in S_R} \xrightarrow{Calibration} \{w_i\}_{i \in S_R}
\]

where S_R is the responses subset of the sample S, such that

\[
T_X = \sum_{i \in S_R} w_i x_i
\]

where X is the known population total.
If the response y is perfectly related to the variable X,

$$y_i = x'_i \beta, \quad \forall i \in U$$

then $\hat{y}^{cal} = \sum_{i \in s} w_i y_i$ is an unbiased estimator of the population total Y.

Generalized REGression (GREG) estimator is a simple form of calibration.
If not doing NR adjustment, i.e.,

\[
\{d_i\}_{i \in S} \xrightarrow{\text{Calibration}} \{w_i\}_{i \in S_R}
\]

the calibration performs on \(S_R \), and assumes the non-respondents behave as the respondents.

The adjusted weight for nonresponse

\[
w^*_i = d_i / \theta_i
\]

where \(\theta_i = \Pr(i \in S_R | S) = \text{response propensity estimated by a logit model.} \)
A Logistic Response Model

\[\log \left(\frac{\theta_i}{1-\theta_i} \right) = z_i^T \gamma \]

where \(z_i \) is a vector of covariates, in our case:

\(z_i = \) (type of governments, log(population size), log(tax2007), log(revenue2007), log(expenditure2007), log(debt2007), log(assets2007), number of times the unit responded in the whole year)

\[\theta_i = \frac{\exp(z_i^T \gamma)}{1+\exp(z_i^T \gamma)} \]

Coefficient vector \(\gamma \) is estimated from the data
Example: Local Government General Sales Tax (T09)

Assumptions:

- The total of sales tax in four quarters in the same year is approximately equal to the estimate from the Annual Finance Survey (AFS) of the same year for each local tax

\[y_q = T09_{2011q}, \quad q = 1, 2, 3, 4 \]
\[y = y_1 + y_2 + y_3 + y_4 \]

Approximately, we have

\[T09_{AFS, 2011} \approx y = y_1 + y_2 + y_3 + y_4 \]
Example: Local Government General Sales Tax (T09) (cont’d)

Calibration equations

\[
\sum_{k \in S} w_k y_k = T_{AFS,2011} \\
\sum_{k \in S} w_k x_k = T_{AFS,2007}
\]

Where \(w_k \) is calibration weight using linear distance, \(y_k \) is the sales tax in 2011, and \(x_k \) is the sales tax in 2007.
Result: Local Government General Sales Tax (T09)

Calibration with NRFU Adjustment

<table>
<thead>
<tr>
<th>\hat{y}_1</th>
<th>\hat{y}_2</th>
<th>\hat{y}_3</th>
<th>\hat{y}_4</th>
<th>$T_{AFS,2011}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>15,540,864 (CV=1.72%)</td>
<td>16,146,981 (CV=3.02%)</td>
<td>15,902,700 (CV=2.55%)</td>
<td>17,840,236 (CV=1.83%)</td>
<td>65,430,781</td>
</tr>
</tbody>
</table>
Variance Estimation

\[e_i = y - x'_i \beta \]

<table>
<thead>
<tr>
<th>(\hat{y}_1)</th>
<th>(\hat{y}_2)</th>
<th>(\hat{y}_3)</th>
<th>(\hat{y}_4)</th>
<th>(\hat{y})</th>
</tr>
</thead>
<tbody>
<tr>
<td>15,954,349</td>
<td>18,743,709</td>
<td>14,874,923</td>
<td>22,615,235</td>
<td>72,188,216</td>
</tr>
</tbody>
</table>
Pros & Cons

Pros:
- Almost unbiased
- Valid if response propensity model is correct
- Able to compute the variance for total

Cons:
- Does not work if the response y is not strongly related to the variable X
- Invalid if the missingness is non-ignorable
- Invalid if S_R is not a representative random sample
Next Steps

- Use more calibration variables
- Nonresponse bias study
- New sample design and questionnaire
Contact

Bac.Tran@census.gov

Justin.D.Nguyen@census.gov