Data Infrastructure and Management Systems in Manufacturing: The Importance of Developing Context to Enable Decision Making

Moneer Helu
National Institute of Standards and Technology
Gaithersburg, MD

2016 Statistical Policy Seminar of the Federal Committee on Statistical Methodology (FCSM)
6th-7th December 2016
Disclaimer

- Identification of commercial systems does not imply recommendation or endorsement by NIST
- Identified commercial systems are not necessarily the best available for the purpose
Information sharing across the digital thread can improve the overall performance of the product design and manufacturing process.
NIST Smart Mfg. Systems Test Bed

Goals:

- Reference architecture and implementation
- Rich source of data for fundamental research
- Physical infrastructure for standards and technology development
- Demonstration test cases for education

How to construct and manage appropriate solutions?
Questions to Address…

What is the right question to ask?

What is the best data to use?

What is the appropriate context to curate?
Integration of heterogeneous systems across the product lifecycle

=> Systems Engineering Approach
Requirements and Specifications

- General description:
 - Product functions
 - User characteristics
 - Operating environments

- Interfaces:
 - User
 - Hardware
 - Software
 - Communications

- Features:
 - VDS and QDR
 - Data curation
 - System administration

- Others:
 - Performance
 - Reliability
 - Availability
 - Security
 - Maintainability
MTConnect: Key Mfg Standard

Rely on standards when possible!

Add-on Sensors
- Powermeter
- Accelerometers
- Thermocouples
- Torquemeter
- Etc.

Machine Tool #1
Machine Tool #2
Machine Tool #3
Machine Tool N
Inspection Tool #1
Inspection Tool #2
Inspection Tool #3
Inspection Tool M

MTC Adapter
MTC Adapter
MTC Adapter
MTC Adapter
MTC Agent
MTC Agent
MTC Agent
Server

Wireless TCP/IP Network

Translates data output to MTC-data definition

Collects, arranges, stores data to transmit

Wired (Ethernet, USB, etc.) or Wireless

2016 Statistical Policy Seminar of the Federal Committee on Statistical Methodology (FCSM)
Manufacturing Data Architecture

- Designed as a four-tier architecture
- Implemented across three networks
- Provides segregated access to internal and external clients
Linking Data to Create Context

Simulated cycle time for one feature was 15 seconds, but measured results show actual cycle time was 80 seconds.

Feed rate mismatch affects production schedule.

Need a solution to overcome impact to scheduling.

In collaboration with: system insights

Retrieve models and data at: https://smstestbed.nist.gov/tdp/d2mi
Questions to Address...

What is the right question to ask?

What is the best data to use?

What is the appropriate context to curate?
Thank you for your kind attention!

Moneer Helu
moneer.helu@nist.gov

More information at: https://smstestbed.nist.gov/

To receive updates: smstestbed@nist.gov
APPENDIX
Data Collection and Aggregation

- Design
- Fabrication
- Inspection

- CAX
- CAM/NC Code
- MTConnect
- OIF

- ECR

- As Designed
- As Planned
- As Executed
- As Measured

- Dynamic Scheduling & Process Control

- Monitoring + Diagnosis + Prognosis
Tier #1: Services

- Shop-floor IT and OT systems
- External sensors and equipment
- Any additional sources of data
Tier #2: Aggregation

- Aggregates and contextualizes service data
- Provides data protocol translation
- Supplies data and information structure for underlying services
Tier #3: Delivery

- Processes and contextualizes data for delivery to client
- Caches content for efficient performance
- Enables further development through data analytics
Tier #4: Client

- Responsible for data delivery
- Consists of web applications and clients

VDS at:
https://smstestbed.nist.gov
Questions to Correct Mismatch

- [Design] Can we redesign geometry to avoid the need for toolpaths with high feed discrepancies?

- [Planning] Can we redesign toolpath to minimize impact of machine dynamics?

- [Machining] Can we enable operator to make informed decisions?

- [Inspection] Can we use information to identify areas for more detailed measurement?

What is the correct question to answer?
How to determine correct solution?

- **Goal:** Determine the best course of action to remedy production scheduling issues
- **Need:** Root cause of feed mismatch
- **Solution:** Integrate multiple data sources from systems across the product lifecycle to determine causation using data analytics
Available Data

- Design model data in native and STEP standard format \textit{(as designed)}
- Milling program as NC code in ISO 6983 standard format \textit{(as planned)}
- Manufacturing execution data in MTConnect standard format \textit{(as executed)}
- Inspection data in QIF standard format \textit{(as inspected)}
Step 1: Present and Represent Activities

Design Data

#131=DIRECTION(' ',(1.,0.,0.));
#136=AXIS2_PLACEMENT_3D(' ',#126,#121,#131);
#141=PLANE('',#136);
#146=CARTESIAN_POINT(' ',(-8.361367154208E-16...)
#151=DIRECTION(' ',(1.087705058168E-16,1.,0.));
#156=VECTOR(' ',#151,1.);
#161=LINE('',#146,#156);
#166=CARTESIAN_POINT(' ',(-8.361367154208E-16...)
#167=VERTEX_POINT(' ',#166);

Manufacturing Data

2016-05-09T11:46:51.456188Z|path_pos|15.0998...
2016-05-09T11:46:51.608005Z|path_pos|15.0998...
2016-05-09T11:46:51.752206Z|path_pos|15.0998...
2016-05-09T11:46:52.040056Z|Cposition|359.9848
2016-05-09T11:46:52.040278Z|Cposition|359.9847
2016-05-09T11:46:52.184104Z|Yposition|-37.80295
2016-05-09T11:46:52.616003Z|path_pos|15.0998...
2016-05-09T11:46:52.616184Z|Yposition|-37.80295
2016-05-09T11:46:52.760205Z|path_pos|15.0998...

... ...
Step 2: Apply Data Analytics

- Overlay the as designed, as planned, and as executed data
- Investigate the relationship of each “feature” across the linked data
- Determine causations and correlations of issues
Step 3: Generate Results

Step 4: Build Knowledge

- **Cause:** Machine never reached planned feed rate
 - Height of the design feature (i.e., chamfers) is small
 - Machine cannot complete acceleration to planned feed rate before completing the fabrication of the design feature
 - Design based on legacy concept and design feature not needed in this design

- **Correlation:** Design, Planning, and Program defects
Step 5: Affect Change

- **Short-term (program):** Enable operator to make educated decisions to override the planned program to speed machining

- **Mid-term (planning):** Rework production schedule and routing to compensate for longer than expected fabrication time

- **Long-term (design):** Redesign part to remove legacy design artifacts and optimize the design for manufacturing
Summary

- Digital thread has potential to improve overall performance of product design and manufacture
- Substantial implementation effort needed to achieve promise of digital thread
- NIST Smart Manufacturing Systems Test Bed enables development of digital thread:
 - Data available @ https://smstestbed.nist.gov/
 - Documentation to be released
 - Data-driven applications forthcoming

Grand Opening:
MFG Day, Oct 7th